

Quick Sort Practice Set

Basic Level

Q1. Dry run Quick Sort on the array:

[10, 7, 8, 9, 1, 5] (Pivot = last element).

Q2. Apply Quick Sort step-by-step on:

[4, 2, 7, 3, 1].

Q3. Show how Quick Sort sorts the array:

[20, 10, 80, 30, 90, 40, 50, 70] using pivot = first element.

Q4. If the array = [5, 4, 3, 2, 1], show the worst-case dry run for Quick Sort (pivot = last element).

Q5. Perform Quick Sort on [15, 3, 2, 1, 9, 5, 7, 8, 6] (pivot = middle element).

Intermediate Level

Q6. Explain why Quick Sort's performance depends on **pivot selection**. Give examples of good and bad pivot choices.

Q7. Sort the array [50, 23, 9, 18, 61, 32] using Quick Sort. Show each partition.

Q8. Prove with an example that Quick Sort can be **in-place** (i.e., does not need extra arrays).

Q9. Apply Quick Sort on the array [9, 12, 3, 5, 14, 10, 10]. How are duplicate elements handled?

Q10. Show how Quick Sort sorts [100, 90, 80, 70, 60, 50]. Which case is this?

Advanced / Hard Level

Q11. Given array [29, 10, 14, 37, 13]:

- Perform Quick Sort with random pivot selection.
- Show one possible sequence of steps.

Q12. Explain why Quick Sort is not stable with an example.

Q13. If Quick Sort is applied to a linked list instead of an array:

- How will the partition step change?
- Is it efficient?

Q14. Suppose Quick Sort is applied recursively on an array of size n.

What is the maximum depth of recursion in the best case and in the worst case?

Q15. You have the array [38, 27, 43, 3, 9, 82, 10].

- Apply Quick Sort step-by-step.
- Compare the **recursion tree** of Quick Sort vs Merge Sort for the same array.

www.tpcglobal.in